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Current Status and Future Directions: The 
Application of Artificial Intelligence/Machine 
Learning for Precision Medicine
Kunal Naik1 , Rahul K. Goyal2,† , Luca Foschini3 , Choi Wai Chak4 , Christian Thielscher5 , Hao 
Zhu1 , James Lu6 , Joseph Lehár4 , Michael A. Pacanoswki1, Nadia Terranova7 , Neha Mehta1, Niklas 
Korsbo8, Tala Fakhouri9 , Qi Liu1  and Jogarao Gobburu2,*

Technological innovations, such as artificial intelligence (AI) and machine learning (ML), have the potential to 
expedite the goal of precision medicine, especially when combined with increased capacity for voluminous data 
from multiple sources and expanded therapeutic modalities; however, they also present several challenges. In 
this communication, we first discuss the goals of precision medicine, and contextualize the use of AI in precision 
medicine by showcasing innovative applications (e.g., prediction of tumor growth and overall survival, biomarker 
identification using biomedical images, and identification of patient population for clinical practice) which were 
presented during the February 2023 virtual public workshop entitled “Application of Artificial Intelligence and 
Machine Learning for Precision Medicine,” hosted by the US Food and Drug Administration (FDA) and University of 
Maryland Center of Excellence in Regulatory Science and Innovation (M-CERSI). Next, we put forward challenges 
brought about by the multidisciplinary nature of AI, particularly highlighting the need for AI to be trustworthy. 
To address such challenges, we subsequently note practical approaches, viz., differential privacy, synthetic data 
generation, and federated learning. The proposed strategies – some of which are highlighted presentations from the 
workshop – are for the protection of personal information and intellectual property. In addition, methods such as the 
risk-based management approach and the need for an agile regulatory ecosystem are discussed. Finally, we lay out 
a call for action that includes sharing of data and algorithms, development of regulatory guidance documents, and 
pooling of expertise from a broad-spectrum of stakeholders to enhance the application of AI in precision medicine.

BACKGROUND
The pace of medical innovation over the past couple of decades is 
remarkable. The menu of therapeutic modalities has grown more 
diverse with proliferation of biologics, oligonucleotides, cell, and 
gene therapies. Diagnostics have also evolved as high throughput 
approaches to sequence the genome in days (or less) are now widely 
available. Activity trackers and smartphones, though consumer 
lifestyle focused, capture and store more data than ever imagined 
when the first smartphone was unveiled in the late 2000s.1,2 All 
these novel tools and technologies have enabled greater precision 
in medicine, that is, the ability to select a drug, dosing, and moni-
toring strategy that is most likely to result in the greatest benefit to 
the patient while minimizing the potential for iatrogenic adverse 
outcomes. However, our ability to match treatments to any given 

individual’s disease is likely still in its infancy. In looking forward, 
increasing amounts of data and computational power will give rise 
to tools that will accelerate drug development and enable greater 
individualization of medical care.

In the current environment, precision medicine is commonly 
thought of as tailoring treatments based on individual charac-
teristics.3 This is often accomplished using a biomarker test or 
some other type of tool that is an “indicator of normal biologi-
cal processes, pathogenic processes, or biological responses to an 
exposure or intervention, including therapeutic interventions.”4 
Susceptibility, prognostic, and predictive biomarkers are measured 
at a single point of time to forecast future events, whereas monitor-
ing, response, and safety biomarkers are assessed serially to provide 
information on improvement or worsening of a clinical outcome 
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relative to a previous timepoint(s).4 In clinical practice, the results 
of a biomarker assessment may inform the risk for safety events, 
confirm, or refine a diagnosis, identify potential responders to a 
particular intervention, or guide the dosage of a drug. In drug de-
velopment, biomarkers can support various clinical trial maneu-
vers, such as enriched trial designs to allow treatment effects to be 
detected if they exist, or to provide evidence that a drug is effective 
and safe.

Most disease therapies only show profound benefit in a mi-
nority of patients because diagnoses encompass many distinct 
biologies.5,6 Precision medicine aims to break cancer diagnoses 
into biologically distinct subtypes, then pursue personalized 
therapies for each group of patients.7 This strategy is enabled by 
recent advances in technologies for medical imaging, molecular 
profiling, and artificial intelligence (AI). The precision medi-
cine approach is neatly summarized by MD Anderson, one of the 
earliest adopters of this approach for oncology (see Figure 1). 
Using a variety of biomarkers (in oncology molecular profiling 
and pathology imaging predominate), patients can be catego-
rized into subtypes with distinct biologies for which different 
treatments can be applied or developed. Using this approach, re-
sponse rates can be increased dramatically within each biologic 
subtype, and the overall outcomes for all patients in the thera-
peutic area can be dramatically improved.

Most current examples of precision medicines have focused 
on matching a drug that has a targeted mechanism of action to a 
relatively specific and well-understood dimension of disease pa-
thology. However, the biological complexity of human disease is 
not so straightforward. For example, molecular alterations in tu-
mors are commonly tested to identify oncogenic drivers. The re-
sults can be used to determine whether the tumor is potentially 
amenable to a drug that is pharmacologically targeted to a specific 
driver. Indeed, numerous drugs have been approved for molecular 

subsets of lung tumors (e.g., cemiplimab, nivolumab, ipilimumab, 
and atezolizumab for tumors with high PD-L1 expression; mob-
ocertinib, amivantamab, osimertinib, ramucirumab, and erlotinib 
for tumors with EGFR alterations, pralsetinib and selpercatinib 
for tumors with RET fusions). In almost every case, the drug was 
targeted for patients whose tumors have a pathogenic driver rele-
vant to the mechanism of the drug. However, other factors, such 
as methylation patterns, copy number variations, and other aber-
rations, may be present, and even coexist.8 If integrated, response 
prediction could potentially be improved. Furthermore, changes in 
the tumor’s molecular composition over time are not currently as-
sessed, and more dynamic approaches based on repeated measures 
could facilitate designing more effective treatment strategies, such 
as different combinations or sequences of therapies. Few examples 
of multifactorial and dynamic models of drug response have been 
implemented in practice.

Advanced data analytics are a key facet of the next generation 
of precision health care, which will be enabled by omic technol-
ogies, the internet of things,9 complex diagnostics, innovative 
therapies, and improved infrastructure for data aggregation. It is 
now possible to generate unprecedented amounts of data on any 
given patient. What remains is an ability to harness those data, 
find a mechanism for a differential response or identify a subset in 
whom the benefit–risk profile may differ, and produce a simplistic 
tool that can be applied at the patient-doctor interface. Precision 
medicine approaches rely on technologies that improve mechanis-
tic understanding of disease and drug response. For example, AI 
and complex data analytics can augment use of existing tools to 
further optimize drug development. AI tools in practice can also 
help resolve multiple factors to support individualized therapeutic 
decision making.

AI refers to the theory and development of computer systems 
able to perform tasks normally requiring human intelligence, 

Figure 1  Precision medicine – finding the right drug for each patient (from MD Anderson Cancer Center).
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in order to deliver solutions that can automate routine tasks, 
draw data-based insights, or augment human activities.10 AI is 
classed into two categories based on the degree of autonomy – 
narrow AI and general AI. Narrow AI systems can perform pre-
determined singular tasks, such as cancer diagnosis, disease risk 
stratification, monitoring patient adherence to treatment, and 
prediction of outcomes from medical signal data (e.g., electro-
cardiograms (ECGs), computed tomography (CT) scans, mag-
netic resonance imaging (MRI) data, and genome sequences). 
On the other hand, general AI involves systems that exhibit 
human-like intelligence and tasks that can even surpass human 
capabilities. Although there have been great strides in narrow 
AI systems, general AI remains an emerging goal for current re-
search and development.

Machine learning (ML) is a subset of AI that focuses on models 
and algorithms which can learn automatically from data without 
being explicitly programmed. Most of the recent groundbreaking 
advancement in the AI field are examples of ML, in particular, 
deep learning (DL; e.g., convolutional neural networks for com-
puter vision, recurrent neural networks, or transformer neural net-
works for natural language processing). DL is a subfield of ML that 
uses multiple processing layers to learn representations of data with 
multiple levels of abstraction.11 Insights generated from AI/ML 
analyses can be used for personalized diagnosis, disease prevention, 
and personalized treatment.

Generally speaking, ML can be divided into three major cate-
gories: supervised learning, unsupervised learning, and reinforce-
ment learning.

Supervised learning is the most widely used AI/ML methodol-
ogy. At its core, supervised learning trains an ML algorithm on a 
labeled dataset of inputs (e.g., tabular data, text, and image) and 
outputs (e.g., a continuous or categorical outcome). Through the 
training process, the algorithm learns the mapping between inputs 
and outputs for performing predictions on new and unseen data. 
On the other hand, unsupervised learning is a methodology where 
an ML algorithm is trained on unlabeled data. The algorithm ex-
tracts hidden intrinsic structures in the data without prior knowl-
edge of output labels. Unsupervised learning is generally used for 
tasks such as clustering (or segmentation), dimensionality reduc-
tion, and anomaly detection.

In reinforcement learning, an agent learns to make decisions 
by interacting with its environment and receives rewards or pun-
ishments based on the actions. The goal of the agent is to learn a 
policy that can maximize long-term rewards that culminates in an 
optimal behavior in an environment. An innovative application 
of reinforcement learning in precision medicine involved using a 
multi-cytokine therapy for the treatment of sepsis. The simula-
tion results suggest a potential to significantly reduce mortality 
rate with this “adaptive” therapy as compared with antibiotics.12

Building upon the foundational understanding and methodol-
ogies, we now move to examining the current landscape of AI in 
precision medicine. In the subsequent section, we will explore the 
breadth of literature, regulatory framework, and practical applica-
tions of AI in precision medicine, thus bridging the gap between 
theoretical knowledge and real-world applications.

CURRENT LANDSCAPE
The literature landscape analyses
Over the past decade, the number of AI health applications has 
exponentially grown.13 This rapid expansion in the use of AI 
in medical research can be attributed to several factors. First, 
the abundance of diverse biomedical data, including data from 
administrative and claims records, electronic health records 
(EHRs), data from registries, and more, has played a pivotal 
role.2 Second, the utilization of multimodal datasets, such as 
data originating from digital health technologies, genomics and 
microbiome data, clinical laboratory and biomarker data, and 
data from medical imaging, has further fueled this growth.2 
Another contributing factor is related to the continuous im-
provements in data standards, interoperability, and health-
care data exchange, which has enabled efficient data sharing.14 
Advancements in data privacy preservation approaches have 
instilled confidence and trust in the utilization of AI by both 
clinicians and patients and are alleviating privacy concerns that 
have traditionally prevented data owners from providing access 
to their data.15–17 However, none of these advancements would 
have been sufficient with the massive increase in computing 
power that has been the driving force behind this acceleration.18 
Notably, the application of AI methods using causal inference 
approaches has been instrumental in advancing the use of AI 
in clinical research, specifically, and particularly in areas where 
understanding the causal relationship between a drug and 
health outcomes is imperative.19

This rapid growth in AI health applications is reflected by the 
exponential increase in the number of studies found on PubMed.​
com using the search terms “Artificial intelligence [Mesh] OR gen-
erative artificial intelligence OR large language models,” for exam-
ple. Between 2016 and 2022, the count of publication increased 
from 6,904 to 32,429, an increase over 4.5-fold (Figure 2). This 
growth occurred over a large number of medical specialties,13 with 
the largest number of applications seen in pathology, radiology, 
surgery, psychiatry, and oncology.

Moreover, applications of AI are within every step of the Drug 
Development Lifecycle leading to disease therapies (Figure 3). The 
classical drug research and development (R&D) pathway proceeds 
from target identification through molecular lead discovery and 
culminates with clinical trials. AI solutions are brought to bear to 
accelerate every step of the process during R&D and post-approval. 
In drug R&D, AI is used to interpret complex disease phenotypes, 
discover new targets, identify/optimize new compounds, and 
mine experimental and clinical data sources.20,21 Post-approval, 
AI is being used to optimize drug manufacture and distribution, 
as well as to ensure market access. For the current pharmacopeia, 
AI is being increasingly used to repurpose existing drugs into new 
disease indications. Regulatory organizations, such as the US Food 
and Drug Administration (FDA), play a pivotal role in ensuring 
meaningful and valid applications of AI and ML on the path 
leading to disease therapies. Therefore, a landscape analysis was 
performed to summarize AI- and ML-related submissions to the 
Center for Drug Evaluation and Research at the FDA from 2016 
to 2022.
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The analysis by Liu et al.,22 has provided an overview of the 
yearly AI and ML-related submissions in years 2016 to 2021 in 
the literature. The current analysis provides an update. A remark-
able increase in the number of submissions has been observed in 
the recent 2 years. There are < 4 submissions per year prior to year 
2019. Around 2019 to 2020, there are ~ 10 submissions per year. 
In the years of 2021 and 2022, the numbers of submissions are 
more than 130 and 170, respectively. Most submissions are at the 
Investigational New Drug stage, where drug developers are explor-
ing the potential usage of various AI and ML tools in drug develop-
ment. Only a few submissions are under New Drug Applications or 
Biological License Applications (Figure 4a).

From 2016 to the end of 2022, more than 300 meeting packages 
containing AI and ML components were submitted to the FDA. 
Among them, only a limited number of AI and ML submissions 
are related to drug discovery. In contrast, using AI and ML tools 
to guide drug design and discovery appears to be very active among 
drug developers. The discrepancy is anticipated because the FDA is 
not actively involved in the drug discovery stage. At the preclinical 
stage, AI and ML approaches have been applied to understand po-
tential toxicity of new compounds. As expected, most submissions 
are at the clinical stage with a few submissions centered around un-
resolved issues after the compound is approved (Figure 4b). There 
appears to be an imbalance on the usage of AI and ML tools to 

Figure 2  PubMed Search query results for: Artificial intelligence [Mesh] OR generative artificial intelligence OR large language models from 
2016 to 2022.
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Figure 3  AI has a role in every aspect of drug discovery and development. Both during R&D (enclosed in arrow) and post-approval, AI 
approaches (examples above the path) are being developed to greatly accelerate each step of the process. Shading shows the authors’ 
heuristic estimate of AI intensity at the time of publication, where less used areas are due to data paucity, undeveloped methods, or slow 
adoption of AI. AI, artificial intelligence; R&D, research and development.
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assist drug development across different therapeutic areas. About 
a quarter of submissions is in oncology-related fields. Psychiatry, 
neurology, gastroenterology, and hepatology, and medical imaging 
are the other therapeutic areas where submissions are commonly 
seen (Figure 4c).

There is a broad usage of AI and ML approaches in clinical drug 
development, as reflected in the submissions. For example, some 
drug developers propose AI and ML modeling to enrich patients, 
to stratify patients with different safety risk factors, to select or op-
timize dosing, or to ensure adherence to the assigned dosing regi-
men. In recent years, some ML algorithms have been used to select 
end points, identify biomarkers, or synthesize control groups. To 
meet these objectives, various modeling approaches have been 
utilized for covariate selection, anomaly detection, image/video/
audio assessment, and real-world data phenotyping. With new 
tools and methodologies available, AI and ML are expected to im-
prove the efficiency of drug development and enhance patient care. 
By peering into transformative and specific applications of AI/ML 
in precision medicine using compelling case studies (Table 1), we 
can gain insights into how precision medicine is adapting to ac-
commodate the surge of technological transformation.

Examples

AI-partnered dynamical model discovery for precision medicine. 
Traditional approaches to modeling patients’ treatment data 
rely upon the development of empirical or mechanistic models 
that leverage existing data and/or capture known interactions 
between disease pathophysiology and drug effects. However, the 

construction of accurate dynamic models to facilitate precision 
medicine have proven to be a formidable challenge, primarily due 
to the complexity of biological systems and the paucity of data. The 
recent emergence of collections of large scale, high content data 
have opened new possibilities. This growth of data has occurred 
along the following three dimensions: (1) the number of patients 
(e.g., from real-world data sources23; (2) the dimensionality of data 
(e.g., from -omics8); and (3) as the number of measurements (e.g., 
from liquid biopsies24 and wearable devices1). The daunting task 
of making sense of this deluge of data can easily overwhelm the 
capabilities of human intellect alone.

One effective approach to overcome the analytical bottleneck is 
to leverage the AI-partnered dynamical model discovery approach, 
whereby the computational strength of AI/ML algorithms is com-
bined with the pharmacological domain knowledge of the human 
modelers.25 As an example, a neural-pharmacokinetic/pharmaco-
dynamic (PK/PD) model that expresses the causality among dose, 
PK, and PD has been developed.25 In the setting of individual-
ized predictions of patients’ platelet count from early data, it has 
been demonstrated that the proposed DL approach can outper-
form the existing population-PK/PD model on certain metrics 
of predictive performance. Furthermore, the importance of using 
a pharmacology-informed neural network architecture for PK 
predictions to unseen dosing regimens has been demonstrated in 
the setting of trastuzumab emtansine (T-DM1).26 The enhanced 
accuracy provided by AI models can unlock new opportunities for 
precision medicine.

Oncology is a particularly promising domain for partnering 
with AI in data-driven dynamic model discovery. Due to the 

Figure 4  Overview of AI/ML Related Submissions for New Drug Development to the FDA. (a) The Number of Submissions by Year. (b) AI/
ML Submissions by Development Stage. (c) AI/ML Submissions by Therapeutic Areas. AI, artificial intelligence; ANDA, abbreviated new drug 
application; BLA, biologics license application; CPIM, Certified in Production and Inventory Management; DDT, drug development tool; FDA, US 
Food and Drug Administration; IND, investigational new drug; ML, machine learning; NDA, new drug application.
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complexity and heterogeneity of tumors, identifying the right 
anticancer therapies and adjusting treatments based on a patient’s 
response are highly challenging tasks. As highlighted by Acosta 
et al.,2 there is a need for AI in integrating data to capture dy-
namic and real-time information to support precision medicine 
approaches. To this end, a pharmacology-informed, encoder-
decoder neural network architecture of Tumor Dynamics 
Neural-ODE (TDNODE) has been proposed.27 This formu-
lation generates patient embeddings from longitudinal tumor 
data at the individual level, which can then be used to predict 
the patients’ overall survival (OS). The model has demonstrated 
the ability to overcome a significant limitation found in exist-
ing tumor dynamic models, specifically the issue of prediction 
bias when utilizing tumor data with short follow-up periods.28 
Furthermore, the methodology has been shown to significantly 
increase the accuracy of predicting OS at the individual patient 
level, hence with the potential for enabling precision medicine 
applications.29

As technology further advances and more data become avail-
able, AI-partnered dynamic model discovery is likely to emerge as 
a crucial way to surmount the challenge of data deluge and help us 
continue to push the boundaries of precision medicine and lead to 
improved outcomes.

AI/ML-enabled drug-disease modeling. A striking demonstration 
of the value of AI/ML-enabled drug-disease modeling lies in 
its applications to advance understanding of disease and drug 
mechanism of action in a totality of evidence mindset. For 
instance, ML methods were used to evaluate prognostic and 
predictive factors governing long-term survival and tumor 
growth dynamics in the Avelumab JAVELIN Gastric trial.30 
Through a systematic analysis of a vast array of covariates, 
AI/ML techniques provided invaluable insights into response 
outcomes and enabled an extensive investigation of patient 
subpopulations that could potentially derive substantial 
benefits from the treatment.

Table 1  Case studies of AI/ML application in precision medicine

Precision medicine application Application description AI/ML method(s) used

Longitudinal patient response predictions to 
dose-optimize trastuzumab emtansine25

Neural-PK and PD model which expresses 
causality between dose, PK and PD was 
implemented. In the setting of individualized 
predictions of patients’ platelet count from 
early data, it has been demonstrated that 
the proposed approach can outperform the 
existing population-PK/PD model on certain 
metrics of predictive performance.

Pharmacology-informed recurrent neural 
networks

Prediction of OS using longitudinal tumor 
data27

Explainable DL was developed for tumor 
growth prediction, discover novel TGD 
metrics, perform unbiased individual-level 
predictions of OS using tumor data with 
short follow-up. GitHub link – https://​github.​
com/​james​lu01/​TDNODE

Pharmacology-informed, encoder-decoder 
neural network, XGBoost and SHapley 
additive explanations

Identification of prognostic factors of long-
term OS in gastric cancer30

Prognostic factors of long-term OS and TGD 
were identified using ML with potential to 
inform future trial design in gastric cancer

Random survival forests, SIDEScreen 
method

Early prediction of disease activity in multiple 
sclerosis patients33

An ML model was developed to predict 
future disease activity in patients with 
multiple sclerosis to facilitate early 
detection of disease onset, improved 
treatment planning, and augment 
understanding of the illness

XGBoost with SHapley additive explanations

Prognostic and predictive factors identifica-
tion of TGD in advanced melanoma patients31

Potential prognostic and predictive 
biomarkers of TGD in advanced melanoma 
patients were identified using high-
dimensional AI/ML covariate screening 
approaches applied on tabular and imaging 
data (radiomics features obtained from 
positron emission tomography/computed 
tomography images)

Random regression forest with several 
variable importance metrics for robust 
feature selection

Patient population identification in clinical 
practice of COVID-19 pneumonia37

A scoring system was developed to identify 
patients with plasma SuPAR level no less 
than 6 ng/mL (no commercially available 
assays) for administration of Anakinra. The 
developed scoring system is part of the 
final fact sheet for Anakinra administration.

Elastic-net regression and neural networks

Abbreviations: AI, artificial intelligence; COVID-19, coronavirus disease 2019; DL, deep learning; ML, machine learning; OS, overall survival; PD, 
pharmacodynamic; PK, pharmacokinetic; SuPAR, soluble urokinase plasminogen activator receptor; TDNODE, Tumor Dynamics Neural-ODE; TGD, tumor growth 
dynamics.
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Furthermore, the synergy between ML and the integration of 
high-dimensional datasets presents an innovative avenue for le-
veraging novel biomarkers such as liquid biopsy circulating tumor 
DNA and image-based radiomics. For the latter, it first attempts to 
integrate radiomic features into models of tumor growth dynamics 
report the use of ML-based radiomics feature selection in the real-
world setting.31 Leveraging tumor phenotype features extracted 
from images into longitudinal disease models has a great potential 
to deepen the comprehension of tumor evolution and progression 
dynamics, thereby contributing to informed clinical decision mak-
ing and to advance precision medicine. In fact, tumor heterogene-
ity is critical in cancer treatment due to drug resistance and failure 
in advanced tumors. Intra-tumor variation and inter-tumoral ge-
netic differences shape disease progression. Standard assessment 
criteria often miss nuances in patients with different lesion dynam-
ics. To address this, CICIL – short for ClassIfication Clustering of 
Individual Lesions – a novel methodology integrating signal pro-
cessing and ML, was introduced to offer an ML-based metric of le-
sion dynamics similarity.32 Applying CICIL to over 1,700 patients 
with metastatic colorectal cancer receiving cetuximab, yielded un-
covered insights. Lesion dynamics differ across tissues, especially in 
KRAS-mutated patients. Notably, a multivariate Cox model high-
lighted the CICIL-based metric of tumor heterogeneity as a signif-
icant predictor of OS, revealing its potential. This is an example of 
how ML-derived metrics may not only advance current approaches 
but also incorporate a holistic view into predictive models.

AI/ML approaches have been further leveraged for precision 
medicine to enhance existing models and provide predictions of 
response dynamics and clinical outcomes in mechanism-agnostic 
manners. This predictive prowess was demonstrated through 
early disease activity prediction in patients with multiple sclerosis, 
achieved by integrating and assessing diverse data dimensions, such 
as demographics, response data, MRI scans, and neurological as-
sessments from pivotal clinical trials of cladribine.33 Integration of 
explainable AI like SHAPley measures enabled a thorough under-
standing of the model results and impact of factors towards predic-
tions of disease activity.

The ability of AI and ML to navigate high-dimensional multi-
modal heterogenous datasets, recover nonlinear effects, and unveil 
complex variable interactions holds profound potential in reshap-
ing drug discovery and therapeutic development. Moreover, the 
integration of AI/ML tools into drug-disease modeling processes 
opens new avenues for understanding novel biomarkers, digital 
biomarkers, real-world data, and translational safety, augmenting 
our understanding of the intricate interplay between drugs and 
diseases.

Accelerated drug development and precision pharmacotherapy 
using DeepNLME. DeepNLME is a seamless mix of dynamic, 
statistical, and ML modeling, the primary benefit of which is 
the ability to utilize disparate sources of information in the same 
model simultaneously. Known interactions in disease biology and 
medical interventions constitute a valuable source of information 
that can be encoded in differential equation-based dynamic 
models.34,35 Mixed effects enable the specification of what 
biological properties are expected to be shared across a population 

of patients and what properties have between-patient variability. 
ML is a flexible way of identifying complex relationships from 
data, be it how a medical image might inform patient-specific 
model parameters or how one dynamic model variable affects the 
rate of change of another. DeepNLME enables explicit encoding 
of incomplete scientific knowledge, letting ML identify the 
missing pieces in a data-driven and individualizable way.

A recent study tested the effectiveness of DeepNLME for en-
abling individualized predictions of survival probabilities based 
on covariates and early tumor size biomarker data. In the model, 
the general structure of the problem was defined such that tumor 
size dynamics were split into one drug responsive and one drug-
unresponsive compartment. The total tumor size then affected the 
hazard of death, enabling the modeling of tumor-size-dependent 
survival probability. Although the structure of the model was ex-
plicitly defined based on biological principles, the exact functional 
forms of how drug concentration and current tumor size affected 
tumor growth/shrinkage, how tumor size affected hazard, and how 
patient covariates could inform patient outcomes were left for neu-
ral networks to automatically discover based on a synthetic data-
set that was used to train the model (200 patients). The trained 
DeepNLME model could accurately reproduce the longitudinal 
tumor sizes predicted by the data-generating model (best possible 
prediction) on unseen data under different scenarios of data avail-
ability (with or without covariates, with or without access to early 
tumor size measurements). Furthermore, the DeepNLME model 
could reproduce the probability of survival for individual patients 
that the data-generating model would predict under the same con-
ditions of data availability. The resulting DeepNLME model could 
thus utilize not only baseline covariates but also all tumor size mea-
surements until a given time to predict the survival probability over 
time and how that probability is affected by different chemothera-
peutic dosing schemes.

The ability of a model to train its behavior based on data from 
previous patients yet individualize predictions of how a patient 
outcome would be affected by different treatment options based 
on all the covariate and longitudinal biomarker information that 
is available for the specific patient at the very day that a treatment 
decision must be made enables tailored treatment optimization. 
The ability to automatically identify complex relationships within 
the model and complex predictive factors not only facilitates more 
rapid modeling but also the discovery of more complex and pre-
dictive relationships than a manual trial-and-error approach to 
modeling might have identified. Although this study has yet to be 
published in full detail, ongoing work is already utilizing the same 
approach with real oncology data, as well as in different domains 
such as ophthalmology and epidemiology.

Application of artificial intelligence and machine learning in drug 
development and precision medicine. Anakinra is an interleukin-1 
antagonist indicated for the treatment of rheumatoid arthritis, 
cryopyrin-associated periodic syndromes, and deficiency of 
interleukin-1 receptor antagonist in the United States.36 A clinical 
trial was conducted to evaluate the efficacy and safety in patients 
with coronavirus disease 2019 (COVID-19) pneumonia who were 
at risk of developing severe respiratory failure. The COVID-19 
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pneumonia was radiologically confirmed by chest X-ray or CT 
scan. As part of the enrollment criteria, all enrolled patients 
were required to have a plasma soluble urokinase plasminogen 
activator receptor (SuPAR) level no less than 6 ng/mL. Based 
on the clinical trial results, the sponsor sought emergency use 
authorization.37 It has been noted that the SuPAR assay is not 
commercially available for use in the United States. To align 
with the clinically tested patient population, an ML analysis was 
conducted with the objective to search for alternative method 
based on commonly measured patient characteristics to identify 
patients with SuPAR no less than 6 ng/mL.38 The final identified 
patient identification method is a scoring system which comprises 
eight items, including age, severe pneumonia defined by World 
Health Organization (WHO) criteria, smoking status, sequential 
organ failure score, neutrophil-to-lymphocyte ratio, hemoglobin, 
medical history of ischemic stroke, blood urea, or medical history 
of renal disease. Patients with at least 3 out of the 8 items meeting 
established threshold are likely to be the patients with SuPAR no 
less than 6 ng/mL. The established scoring system demonstrated 
high positive predictive value, high specificity, and reasonable 
sensitivity in both the training and external validation dataset. 
The selected items are also biologically plausible. This score 
is recommended in the fact sheet of anakinra to guide patient 
population identification in clinical practice.37

From literature summary to regulatory landscape to concrete case 
studies, we have encapsulated the potential that AI/ML currently 
holds in transforming the field of precision medicine. The transfor-
mative promise, however, presents a gamut of challenges that merit 
careful consideration and require addressing of nuanced issues re-
lated to bias, generalizability, reliability, interpretability, and privacy. 
With the foundation firmly established, in the next section, we will 
navigate current challenges, and suggestions to address these chal-
lenges, and elucidate how AI’s integration in precision medicine can 
be harnessed responsibly and ethically to revolutionize patient care.

CHALLENGES AND FUTURE DIRECTION
Challenges in AI/ML for health
The capabilities of AI systems are increasing by the day. Large lan-
guage models (LLMs) are now able to confidently engage in any 
topic, create rhymes, debug code, and even pass the US medical 
licensing examination.39 These tools are being rapidly adopted by 
the community. Take the example of ChatGPT, an AI Chatbot 
developed by OpenAI (https://​chat.​openai.​com/​). It reached one 
million users in just 5 days,40 highlighting the transformative 
potential – and perils – of AI technologies. Nevertheless, these 
achievements of AI have also sparked critical debates around its 
accuracy, safety, privacy, reliability, and, most importantly, its 
trustworthiness. The various challenges brought about by AI in 
precision medicine and potential solutions are outlined in Table 2.

Trust is a critical yet elusive concept, particularly in the AI do-
main. As it happens among humans, trust requires time to build 
but can be lost instantly. For instance, ChatGPT is known for 
confidently providing inaccurate answers.41 These occurrences, 
referred to as “hallucinations,” are instances where the system con-
fidently and erroneously produces outputs. These seemingly trivial 
yet crucial mistakes are an example of how the trustworthiness of 
AI systems can be easily undermined, casting a shadow over their 
potential benefits. Therefore, it is clear that establishing trust in AI 
necessitates the absence of such untrustworthy behaviors.

To address these challenges, it is essential to identify a compre-
hensive set of conditions deemed necessary for trustworthiness in 
AI systems. The National Institute of Standards and Technology 
(NIST) has made strides in this direction, outlining key dimen-
sions of trustworthiness in their recently-released guideline.42 
These include validity, reliability, safety, security, explainability, 
interpretability, privacy, and fairness (Figure 5). These dimensions 
bridge the gap between scientific and engineering perspectives, 
highlighting the multidisciplinary nature of AI and the unique 
considerations each discipline brings to the table.

Table 2  Challenges and solutions for AI/ML systems in precision medicine

Challenges recognized Proposed solutions

AI systems may exhibit untrustworthy behavior. Trustworthiness 
requires validity and reliability – reproducibility, generalizability, and 
adversarial resilience – accountability and transparency.

•	 Promote the use of AI Risk Management Framework42

•	 Creation of societal level agreed upon criteria for trustworthiness
•	 Implement model public auditability
•	 Development of proofs and certificates for AI systems’ design
•	 Outline context of use of AI systems in depth
•	 Standardization of protocols for scoring datasets
•	 Incentivize model builders to demonstrate trustworthiness in AI 

systems

ML algorithms may manifest racial bias, economic bias, and biases 
related to cultures, identities, and values of humans labeling the 
datasets. This can result in biased and unfair behavior of AI systems 
towards certain patient populations.

•	 Encourage usage of the “ethical algorithm” to reduce bias in 
model predictions51

•	 Use federated learning to ensure fairness

AI systems are susceptible to data extraction attacks or might inad-
vertently divulge confidential information. Ensuring privacy and safety 
of personal information and intellectual property is crucial.

•	 Use homomorphic encryption and multi-party computation to 
ensure algorithm privacy

•	 Use federated learning and differential privacy to safeguard 
personal information57

•	 Use synthetic data generation as a solution to protect patient 
privacy

Abbreviations: AI, artificial intelligence; ML, machine learning.

STATE of the ART REVIEW
 15326535, 2024, 4, D

ow
nloaded from

 https://ascpt.onlinelibrary.w
iley.com

/doi/10.1002/cpt.3152, W
iley O

nline L
ibrary on [31/03/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://chat.openai.com/


CLINICAL PHARMACOLOGY & THERAPEUTICS | VOLUME 115 NUMBER 4 | April 2024 681

Validity and reliability form the cornerstone of any empirical re-
search. The findings should not only be reproducible but also capa-
ble of generalizing across similar application domains and remaining 
stable over time. However, an examination of over 300 papers in ML 
for health (ML4H) health applications revealed significant repro-
ducibility issues.43 These range from issues related to code and data 
availability, variances in model performance, and the utilization of 
multiple datasets for testing. These factors contribute significantly to 
the challenges of achieving reproducibility in AI research.

Reliability can be many things, one example for AI systems 
extends to its resilience to adversarial examples. There have been 
instances where ML systems could be fooled by strategically con-
structed inputs. For instance, stickers on stop signs can render 
them invisible to self-driving cars,44 or for the medical domain spe-
cifically, the fact that addition of noise to ECG readings can alter 
the prediction of an AI classifier.45

Bias is another critical issue that can lead to irreproducibility and 
unfair outcomes across different subgroups of people. For example, 
a recent review of many ML models trained on Fitbit data to detect 
COVID showed widely different performances when tested on dif-
ferent datasets.46 This discrepancy goes above and beyond model 
drifts phenomena that are already well studied in other fields of med-
ical machine learning, such as EHR,47 and suggest that different ML 
models have been trained with significantly differing definitions of 
“COVID cases,” some more and some less severe stemming from the 
fact that each real-world dataset has its unique characteristics, intro-
ducing potential for bias, and consequently, irreproducibility.

Bias in AI for health applications is not a new phenomenon. There 
have been documented cases of algorithmic bias in health care, such 
as classifiers exhibiting unequal error rates across races in mortality 
prediction tasks,48 and algorithms misidentifying historical health 
costs as a proxy for health needs, leading to unfair triaging of differ-
ent populations.49 Even algorithms measuring oxygen saturation have 
exhibited racial bias, leading to unfair treatment, demonstrating that 
bias can affect any algorithm, ML-based or not.50 Therefore, ensuring 
trust in AI systems necessitates careful navigation and balance of these 
complex factors to guarantee reliability, fairness, and validity.

The last 5 years of research have indicated that it is possible to 
develop fair algorithms despite biased data51; however, it becomes 
increasingly difficult when the discriminated-against group is 
heavily under-represented or completely absent from the training 
set. This absence of diversity not only affects the generalizability of 
the research findings but also hampers efforts toward the creation 
of fair AI algorithms.

Bias can subtly infiltrate AI models and persistently affect their 
outputs. For instance, ChatGPT, based on GPT-3.5, incorporates 
a supervised and reinforcement learning fine-tuning step, which 
has improved the accuracy of the model.52 However, this step 
introduces a layer of bias through the human labelers, or annota-
tors, whose identities, cultures, beliefs, and values influence the 
responses provided by ChatGPT. This additional source of bias 
complicates efforts to mitigate the overall bias of the model, em-
phasizing the need for diversity among annotators, not only for 
text, but for medical applications alike.

Privacy is another major concern, particularly in the context 
of large language models that have been proven susceptible to ex-
traction attacks. GPT-2, the predecessor of ChatGPT, has been 
shown to be amenable to being tricked into divulging confiden-
tial information from its training data.53 The same risk applies 
to health settings, especially with the increasing use of wearable 
devices that collect sensitive health data. Such data are high-
dimensional and even seemingly innocuous data, such as a series of 
step counts from a Fitbit device, could potentially be used as a key 
for extraction attacks if the AI systems are not trained in a privacy-
protected manner.

Fortunately, there are ways to mitigate these issues. Models 
can be trained to generalize across datasets and time, maintain 
a certain level of privacy, and ensure fairness.51 However, these 
mitigations often involve trade-offs among different factors, 
such as validity, fairness, and privacy. The NIST in their re-
cently released framework42 recommends a risk-based approach, 
which involves identifying the context of use of the AI system 
and striking an appropriate balance among the different factors 
(Figure 6).

Ultimately, establishing trust in AI cannot be proven exhaus-
tively but can be described using a set of criteria agreed upon at 
the societal level. Full openness of the models may not be possi-
ble due to privacy, cost, or Intellectual Property (IP) reasons, but 
that does not rule out trade-offs such as model public auditabil-
ity that it is crucial to ensure the trustworthiness of AI systems 
(https://​www.​medpe​rf.​org/​). This process may involve creating 
proofs and certificates that attest to the involvement of end-users 
during the AI system’s design. It also includes the development 
of standardized protocols for scoring datasets54,55 for represen-
tativeness and describing the context of use and the suggested 
trade-offs around different trustworthiness criteria. These ef-
forts require creating a system of incentives at the societal level 

Figure 5  Characteristics of trustworthy AI systems. Valid & Reliable is a necessary condition of trustworthiness and is shown as the base for 
other trustworthiness characteristics. Accountable & Transparent is shown as a vertical box because it relates to all other characteristics.42 
AI, artificial intelligence.
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to encourage model builders to demonstrate the trustworthiness 
of their AI systems, even when the underlying data or algorithms 
cannot be openly shared.

Data sharing, distributed learning, and synthetic data 
generation
Despite a global surge in health data, access to health data remains 
a major challenge in AI/ML development for health. There are 
three reasons. First, health data are often decentralized and gen-
erated by many different actors, such as hospitals, companies, 
and devices.56 Second, health data contain personal and sensitive 
information and are therefore highly regulated.17 Consequently, 
managing and using medical data requires strict adherence to 
data protection guidelines and regulations, namely the General 
Data Protection Regulation (GDPR) in Europe and the Health 
Insurance Portability and Accountability Act (HIPAA) in the 
United States. Third, because it is costly to generate health data, 
they are valuable and require high market prices to acquire. In ad-
dition, data providers (e.g., academics, startups, and pharmaceu-
tical companies) must generate and share data in an ecosystem of 
competing interests.

To address these challenges, institutions seeking collaboration 
in the health sector need to identify an efficient, scalable, and 
secure approach to share their data. Conventionally, health data 
are shared through a data pooling approach. The data generated 
by multiple sources are aggregated and stored in a central loca-
tion before analyses and modeling. However, this method re-
quires high levels of computation power and storage space from 
a centralized provider to handle large data and is prone to data 
security risks.

Federated data access offers a novel way to break these data 
silos and enable collaborative ML efforts among different data 
sources (i.e., pharmaceutical companies, clinical researchers, 
manufacturers, and hospitals).57 In contrast to the conventional 
data pooling approach, the federated approach trains models lo-
cally within each institution.58 For instance, in forming a feder-
ated model, only the models trained in the institutions are shared 
and aggregated by a central organizing company. Over time, the 
federated model is then optimized by integrating the insights 
from all different sources without directly accessing individual 
patient data from the institutions. There are three advantages: 
first, it provides a secure, private path for diverse institutions to 
share data. Because the aggregating provider does not have direct 
access to individual patient data, it protects the patients’ privacy 
and maintains the security of proprietary source information. 
Second, the data providers retain full ownership and control 
of their data. Finally, it enhances the efficiency and scalability 
in accessing large-volume data as no copies of private data are 
downloaded and centrally stored.

Three aspects must be considered to realize a secured and 
efficient collaborative ML: data privacy, algorithm privacy, 
and performance (or compute power). Several approaches can 
be taken to safeguard these three aspects. For example, “differ-
ential privacy” can be deployed to protect data privacy. This 
method allows masking and de-identification of the original 
data sources by imposing additional, structured noises to the 
data. “Homomorphic encryption and multi-party computation” 
can be applied to further secure algorithm privacy. Data are en-
crypted and can only be decoded with an access key possessed 
by a validated owner. Although this method enables proven 

Figure 6  Depending on the chosen Context of Use (CoU), as represented as a point on the dimension from blue to red (science to health care 
applications) different tradeoffs between different dimensions of trustworthiness are necessary.
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data and algorithm privacy, it requires massive computational 
resources in real-life scenarios. The third method to secure a 
high performance while protecting the data privacy is to apply 
“federated learning.” Federated learning can also be reinforced 
with methods like “algorithm or model compilation, secure ag-
gregation (MPC – HE), and trustless traceability.”17,59 These 
reinforcement methods ensure a comparable level of algorithm 
privacy to that of homomorphic and multi-party computation 
approaches, whereas achieving the high-performance levels of a 
standard federated learning approach.

In addition, federated learning possesses unique qualities that 
facilitates healthcare data sharing. First, it is fundamentally data 
agnostic, meaning that it can be applied to analyze a variety of data 
modalities. Second, it is framework and infrastructure agnostic, 
indicating that it can be applied to any kind of machine or technol-
ogy analytics technology and can be adapted to different informa-
tion technology infrastructures.

Consequently, federated learning has been increasingly applied 
to advance AI in medical research. By enabling pharmaceutical 
companies, hospitals, and academics to bring their data together 
securely, it accelerates the formation of new international collab-
oration and cooperative consortia on discovering complex disease 
mechanisms and biologies. It also opens up new opportunities for 
data exchange and aggregation, such as combining heterogeneous, 
multimodal data and ensuring a critical mass of patient data for rare 
disease R&D. Increasing evidence has also shown that it is a prom-
ising approach in advancing precision medicine by accelerating the 
identification of biomarkers, patient subtypes, and drug targets for 
complex diseases such as cancers.

Use of synthetic data is a lucrative strategy to preserve data pri-
vacy while improving the efficiency and innovation of using AI/
ML to advance precision medicine and medical research.60,61 To 
protect patient privacy, Giuffre and Shung have discussed the uti-
lization of practical differential privacy methods to help trade-off 
privacy and utility, thereby increasing practical applications of AI/
ML-based synthetic data generation (SDG) tools.60 Although data 
synthesis is not new, there has been significant advancements in 
SDG methods. Traditionally, stochastic Monte-Carlo simulations 
on differential equations of dynamic systems or statistical models 
have been used for SDG. In the past decade, scalable and general-
izable AI/ML-based SDG methods, such as generative adversarial 
neural networks, variational auto-encoders, and auto-regressive 
models were developed and have been successfully exploited for 
the recent AI revolution of large-language models.62–64

Use of synthetic data can not only help preserve patient privacy 
but also help generate hypotheses in the process of obtaining real 
datasets, augment real datasets (partial synthetic data), ease sharing 
data to verify analyses and improve reproducibility, and pre-train 
models to be used for application in specific populations.65 AI/ML 
models for SDG have shown to emulate real data characteristics 
in various therapeutic areas, including but not limited to hematol-
ogy, oncology, infectious diseases, medical imaging, and endocri-
nology for lucrative applications, such as estimation of treatment 
effect and survival, use as a proxy for clinical trial datasets to per-
form secondary analyses, generate large datasets for development 
of image segmentation models, predict future patient outcomes 

(e.g., glycemic change), and data augmentation to develop disease 
diagnosis models.66–70 Additionally, open source tools, such as 
Synthea, have been developed for generating EHRs data of patient 
disease progression and clinical workflow.71 These examples and 
open-source software highlight the utility of synthetic data while 
maintaining privacy of patient data.

Artificial data, however, are not immune to pitfalls. These data 
can perpetuate and/or accentuate biases underlying the original 
data used to create the data generation model, might lack inter-
pretability due to the black-box nature of underlying algorithms 
leading to lack of trust in using for real applications, might reveal 
confidential information in an adversarial attack, and lack consen-
sus on evaluation of data quality.60,61,72 These challenges are being 
carefully addressed by development of regulatory policies around 
using these data for improving patient outcomes.60

Regulatory considerations (with a focus on fit-for-purpose 
risk-based framework) for the use of AI/ML for precision 
medicine
The diverse uses of AI in drug development highlight the need 
for a careful regulatory assessment of both benefits and risks and 
underscores the importance of adopting a risk-based management 
approach that is proportional with measures commensurate with 
the level of risk posed by the specific context of use. For any spe-
cific AI application in drug development, model risk calculations 
will be determined by model influence and the decision conse-
quence based on the context of use. For example, high-risk models 
may require more evidence of credibility than low-risk models, 
and the regulatory approach may differ accordingly.

As with any innovation, AI and ML creates opportunities, and 
new and unique challenges. To meet these challenges, the FDA has 
accelerated its efforts to create an agile regulatory ecosystem that 
can facilitate innovation and adoption while safeguarding public 
health. As the FDA continues to refine the regulatory approaches 
around the use of AI to facilitate the generation of reliable evidence 
and to support decision making, the evidentiary standards needed 
to support drug approvals remain the same regardless of the tech-
nological advances involved. AI and ML will undoubtedly play a 
critical role in drug development, and the FDA remains commit-
ted to robust policy development that both protects and promotes 
public health.

CALL FOR ACTIONS
Sharing of data, algorithms, and experiences among the 
community
The call to action to make data collected with National Institutes 
of Health (NIH) grants available to the community has finally 
become a funded mandate, with the NIH Data management 
policy coming into effect January 25, 2023, and allowing re-
searchers to write in their grants the cost for long-term data 
sharing (https://​grants.​nih.​gov/​grants/​guide/​​notic​e-​files/​​NOT-​
OD-​21-​013.​html). But sharing does not necessarily mean re-use 
and therefore reproducibility; many datasets, especially in the 
medical world, have been recently deemed “Open In Appearance 
Only.”73 Furthermore, even when data are successfully re-used, 
reproducibility of analysis and findings are still not guaranteed if 
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code is not released alongside data.43 For this reason, health anal-
ysis and algorithms could be made available to all potential fu-
ture subjects of those algorithms’ decisions (in the health world, 
that means all of us). Due to privacy, cost and IP implication this 
may not be always possible (especially when it comes to regula-
tory bodies) but it is worth pushing for at least some form of pub-
licly auditability, when data/models may not be made publicly 
available directly, but performances and scores across domains 
of interest (e.g., representatives for datasets) are. This has been 
described as “federated benchmarking,” and the recent release 
of MedPerf (medpe​rf.​org) by MLCommons provides a privacy-
preserving open-source platform for benchmarking AI models to 
deliver clinical efficacy.74

Development of best practices and regulatory guidances
The FDA continues to engage sponsors, AI tool developers, data 
service providers, ethicists, academia, patients and patient groups, 
and other international regulatory authorities interested in AI 
and ML in drug and biologic development through discussion 
papers, white papers, workshops, and meetings, etc. These engage-
ments serve to better understand any gaps in regulatory scientific 
methods that may need to be developed and aims to pave the way 
for meaningful regulatory clarity as these technologies continue 
to evolve.

Work with broad stakeholders
Precision medicine, is an important field with profound implica-
tions for drug development and health care, stands on the brink of 
a significant evolution with the advent of AI/ML. A considerable 

amount of activity has built up over the past decade applying 
AI toward all aspects of health care. A concise visualization 
this activity was presented by the consulting firm LEK in 2018 
(Figure 7). Companies are shown organized by their activity in 
terms of primary data types used and the drug development stage 
their technologies are principally applied toward. The key point of 
this illustration is that there is a vast variety of AI-driven research 
in toward health care, and many companies are using diverse and 
complementary approaches. Clearly in this ecosystem, it is essen-
tial to find effective partnerships between academia, biotechnol-
ogy companies, and big pharma. Thus, successful integration of 
AI/ML in precision medicine requires collaborations across a 
wide range of stakeholders, including but not limited to patient 
groups, academic institutions, non-profit organizations, industry, 
and regulatory bodies. Each stakeholder group possesses unique 
expertise and perspectives that are critical to the successful appli-
cation of AI/ML in precision medicine. We envision this collabo-
ration will involve knowledge sharing, joint problem-solving, and 
creation of standards and solutions. In this concerted effort, we 
need to ensure the applications of AI/ML in precision medicine 
is technologically sound, clinically relevant, ethically appropriate, 
and patient-centered. By fostering an ecosystem of collaboration, 
we can collectively address the challenges and unlock the potential 
these technologies hold for facilitating drug development and im-
proving patient outcomes.
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