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Technological innovations, such as artificial intelligence (Al) and machine learning (ML), have the potential to
expedite the goal of precision medicine, especially when combined with increased capacity for voluminous data
from multiple sources and expanded therapeutic modalities; however, they also present several challenges. In
this communication, we first discuss the goals of precision medicine, and contextualize the use of Al in precision
medicine by showcasing innovative applications (e.g., prediction of tumor growth and overall survival, biomarker
identification using biomedical images, and identification of patient population for clinical practice) which were
presented during the February 2023 virtual public workshop entitled “Application of Artificial Intelligence and
Machine Learning for Precision Medicine,” hosted by the US Food and Drug Administration (FDA) and University of
Maryland Center of Excellence in Regulatory Science and Innovation (M-CERSI). Next, we put forward challenges
brought about by the multidisciplinary nature of Al, particularly highlighting the need for Al to be trustworthy.

To address such challenges, we subsequently note practical approaches, viz., differential privacy, synthetic data

generation, and federated learning. The proposed strategies - some of which are highlighted presentations from the
workshop - are for the protection of personal information and intellectual property. In addition, methods such as the
risk-based management approach and the need for an agile regulatory ecosystem are discussed. Finally, we lay out
a call for action that includes sharing of data and algorithms, development of regulatory guidance documents, and
pooling of expertise from a broad-spectrum of stakeholders to enhance the application of Al in precision medicine.

BACKGROUND

The pace of medical innovation over the past couple of decades is
remarkable. The menu of therapeutic modalities has grown more
diverse with proliferation of biologics, oligonucleotides, cell, and
gene therapies. Diagnostics have also evolved as high throughput
approaches to sequence the genome in days (or less) are now widely
available. Activity trackers and smartphones, though consumer
lifestyle focused, capture and store more data than ever imagined
when the first smartphone was unveiled in the late 2000s.1 All
these novel tools and technologies have enabled greater precision
in medicine, that is, the ability to select a drug, dosing, and moni-
toring strategy that is most likely to result in the greatest benefit to
the patient while minimizing the potential for iatrogenic adverse
outcomes. However, our ability to match treatments to any given

individual’s disease is likely still in its infancy. In looking forward,
increasing amounts of data and computational power will give rise
to tools that will accelerate drug development and enable greater
individualization of medical care.

In the current environment, precision medicine is commonly
thought of as tailoring treatments based on individual charac-
teristics.” This is often accomplished using a biomarker test or
some other type of tool that is an “indicator of normal biologi-
cal processes, pathogenic processes, or biological responses to an
exposure or intervention, including therapeutic interventions”*
Susceptibility, prognostic, and predictive biomarkers are measured
at a single point of time to forecast future events, whereas monitor-
ing, response, and safety biomarkers are assessed serially to provide
information on improvement or worsening of a clinical outcome
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relative to a previous timepoint(s).4 In clinical practice, the results
of a biomarker assessment may inform the risk for safety events,
confirm, or refine a diagnosis, identify potential responders to a
particular intervention, or guide the dosage of a drug. In drug de-
velopment, biomarkers can support various clinical trial maneu-
vers, such as enriched trial designs to allow treatment effects to be
detected if they exist, or to provide evidence that a drug is effective
and safe.

Most discase therapies only show profound benefit in a mi-
nority of patients because diagnoses encompass many distinct
biologies.% Precision medicine aims to break cancer diagnoses
into biologically distinct subtypes, then pursue personalized
therapies for each group ofpatients.7 This strategy is enabled by
recent advances in technologies for medical imaging, molecular
profiling, and artificial intelligence (AI). The precision medi-
cine approach is neatly summarized by MD Anderson, one of the
carliest adopters of this approach for oncology (sce Figure 1).
Using a varicety of biomarkers (in oncology molecular profiling
and pathology imaging predominate), patients can be catego-
rized into subtypes with distinct biologies for which different
treatments can be applied or developed. Using this approach, re-
sponse rates can be increased dramatically within each biologic
subtype, and the overall outcomes for all patients in the thera-
peutic area can be dramatically improved.

Most current examples of precision medicines have focused
on matching a drug that has a targeted mechanism of action to a
relatively specific and well-understood dimension of disease pa-
thology. However, the biological complexity of human disease is
not so straightforward. For example, molecular alterations in tu-
mors are commonly tested to identify oncogenic drivers. The re-
sults can be used to determine whether the tumor is potentially
amenable to a drug that is pharmacologically targeted to a specific
driver. Indeed, numerous drugs have been approved for molecular
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subsets of lung tumors (e.g., cemiplimab, nivolumab, ipilimumab,
and atezolizumab for tumors with high PD-L1 expression; mob-
ocertinib, amivantamab, osimertinib, ramucirumab, and erlotinib
for tumors with EGFR alterations, pralsetinib and selpercatinib
for tumors with RET fusions). In almost every case, the drug was
targeted for patients whose tumors have a pathogenic driver rele-
vant to the mechanism of the drug. However, other factors, such
as methylation patterns, copy number variations, and other aber-
rations, may be present, and even coexist.d If integrated, response
prediction could potentially be improved. Furthermore, changes in
the tumor’s molecular composition over time are not currently as-
sessed, and more dynamic approaches based on repeated measures
could facilitate designing more effective treatment strategies, such
as different combinations or sequences of therapies. Few examples
of multifactorial and dynamic models of drug response have been
implemented in practice.

Advanced data analytics are a key facet of the next generation
of precision health care, which will be enabled by omic technol-
ogies, the internet of things,9 complex diagnostics, innovative
therapies, and improved infrastructure for data aggregation. It is
now possible to generate unprecedented amounts of data on any
given patient. What remains is an ability to harness those data,
find a mechanism for a differential response or identify a subset in
whom the benefit-risk profile may differ, and produce a simplistic
tool that can be applied at the patient-doctor interface. Precision
medicine approaches rely on technologies that improve mechanis-
tic understanding of disease and drug response. For example, Al
and complex data analytics can augment use of existing tools to
further optimize drug development. Al tools in practice can also
help resolve multiple factors to support individualized therapeutic
decision making.

AT refers to the theory and development of computer systems
able to perform tasks normally requiring human intelligence,
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Figure 1 Precision medicine — finding the right drug for each patient (from MD Anderson Cancer Center).

674

VOLUME 115 NUMBER 4 | April 2024 | www.cpt-journal.com

95U8017 SUOWILUIOD SAITe8.D 3|qeatdde sy Aq pausenob afe sopie O 9Sh J0 S9|N. 10} Akl 8UIJUO A8]1/ UO (SUOTIPUOD-PpUe-SWLB)AL0D" A8 | IMAle.d 1jeu1|Uoy/:Sdy) SuonipuoD pue swie | 8y 38S *[6202/S0/TE] Uo Akiqiaulluo A(IM ‘2STE 1d9/200T 0T/I0p/woo A8 im Alelq 1 jpuljuoidase//:sdny woJj pspeojumod ‘v ‘¥Z0Z ‘GES9ZEST



STATE @ART REVIEW

in order to deliver solutions that can automate routine tasks,
draw data-based insights, or augment human activities.'® Al is
classed into two categories based on the degree of autonomy —
narrow Al and general AL Narrow Al systems can perform pre-
determined singular tasks, such as cancer diagnosis, disease risk
stratification, monitoring patient adherence to treatment, and
prediction of outcomes from medical signal data (e.g., electro-
cardiograms (ECGs), computed tomography (CT) scans, mag-
netic resonance imaging (MRI) data, and genome sequences).
On the other hand, general Al involves systems that exhibit
human-like intelligence and tasks that can even surpass human
capabilities. Although there have been great strides in narrow
Al systems, general Al remains an emerging goal for current re-
search and development.

Machine learning (ML) is a subset of AI that focuses on models
and algorithms which can learn automatically from data without
being explicitly programmed. Most of the recent groundbreaking
advancement in the Al field are examples of ML, in particular,
deep learning (DL; e.g., convolutional neural networks for com-
puter vision, recurrent neural networks, or transformer neural net-
works for natural language processing). DL is a subficld of ML that
uses multiple processing layers to learn representations of data with
multiple levels of abstraction.!! Insights generated from AI/ML
analyses can be used for personalized diagnosis, disease prevention,
and personalized treatment.

Generally speaking, ML can be divided into three major cate-
gories: supervised learning, unsupervised learning, and reinforce-
ment learning.

Supervised learning is the most widely used AI/ML methodol-
ogy. At its core, supervised learning trains an ML algorithm on a
labeled dataset of inputs (e.g., tabular data, text, and image) and
outputs (e.g., a continuous or categorical outcome). Through the
training process, the algorithm learns the mapping between inputs
and outputs for performing predictions on new and unseen data.
On the other hand, unsupervised learning is a methodology where
an ML algorithm is trained on unlabeled data. The algorithm ex-
tracts hidden intrinsic structures in the data without prior knowl-
edge of output labels. Unsupervised learning is generally used for
tasks such as clustering (or segmentation), dimensionality reduc-
tion, and anomaly detection.

In reinforcement learning, an agent learns to make decisions
by interacting with its environment and receives rewards or pun-
ishments based on the actions. The goal of the agent is to learn a
policy that can maximize long-term rewards that culminates in an
optimal behavior in an environment. An innovative application
of reinforcement learning in precision medicine involved using a
multi-cytokine therapy for the treatment of sepsis. The simula-
tion results suggest a potential to significantly reduce mortality
rate with this “adaptive” therapy as compared with antibiotics.'”

Building upon the foundational understanding and methodol-
ogies, We now move to examining the current landscape of Al in
precision medicine. In the subsequent section, we will explore the
breadth of literature, regulatory framework, and practical applica-
tions of Al in precision medicine, thus bridging the gap between
theoretical knowledge and real-world applications.
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CURRENT LANDSCAPE

The literature landscape analyses

Over the past decade, the number of AT health applications has
exponentially grown."? This rapid expansion in the use of Al
in medical research can be attributed to several factors. First,
the abundance of diverse biomedical data, including data from
administrative and claims records, electronic health records
(EHRs), data from registries, and more, has played a pivotal
role.? Second, the utilization of multimodal datasets, such as
data originating from digital health technologies, genomics and
microbiome data, clinical laboratory and biomarker data, and
data from medical imaging, has further fueled this growth.2
Another contributing factor is related to the continuous im-
provements in data standards, interoperability, and health-
care data exchange, which has enabled efficient data sharing.14
Advancements in data privacy preservation approaches have
instilled confidence and trust in the utilization of AI by both
clinicians and patients and are alleviating privacy concerns that
have traditionally prevented data owners from providing access
to their data.”> ™" However, none of these advancements would
have been sufficient with the massive increase in computing
power that has been the driving force behind this acceleration.
Notably, the application of AI methods using causal inference
approaches has been instrumental in advancing the use of Al
in clinical research, specifically, and particularly in areas where
understanding the causal relationship between a drug and
health outcomes is imperative.19

This rapid growth in Al health applications is reflected by the
exponential increase in the number of studies found on PubMed.
com using the search terms “Artificial intelligence [Mesh] OR gen-
erative artificial intelligence OR large language models;” for exam-
ple. Between 2016 and 2022, the count of publication increased
from 6,904 to 32,429, an increase over 4.5-fold (Figure 2). This
growth occurred over a large number of medical spf:cialties,13 with
the largest number of applications seen in pathology, radiology,
surgery, psychiatry, and oncology.

Moreover, applications of Al are within every step of the Drug
Development Lifecycle leading to disease therapies (Figure 3). The
classical drug research and development (R&D) pathway proceeds
from target identification through molecular lead discovery and
culminates with clinical trials. Al solutions are brought to bear to
accelerate every step of the process during R&D and post-approval.
In drug R&D, Al is used to interpret complex disease phenotypes,
discover new targets, identify/optimize new compounds, and
mine experimental and clinical data sources.”*?! Post-approval,
Al is being used to optimize drug manufacture and distribution,
as well as to ensure market access. For the current pharmacopeia,
Al is being increasingly used to repurpose existing drugs into new
disease indications. Regulatory organizations, such as the US Food
and Drug Administration (FDA), play a pivotal role in ensuring
meaningful and valid applications of Al and ML on the path
leading to disease therapies. Therefore, a landscape analysis was
performed to summarize Al- and ML-related submissions to the
Center for Drug Evaluation and Research at the FDA from 2016
to 2022.
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Figure 2 PubMed Search query results for: Artificial intelligence [Mesh] OR generative artificial intelligence OR large language models from

2016 to 2022.
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Figure 3 Al has a role in every aspect of drug discovery and development. Both during R&D (enclosed in arrow) and post-approval, Al
approaches (examples above the path) are being developed to greatly accelerate each step of the process. Shading shows the authors’
heuristic estimate of Al intensity at the time of publication, where less used areas are due to data paucity, undeveloped methods, or slow

adoption of Al. Al, artificial intelligence; R&D, research and development.

The analysis by Liu ez al.? has provided an overview of the
yearly AI and ML-related submissions in years 2016 to 2021 in
the literature. The current analysis provides an update. A remark-
able increase in the number of submissions has been observed in
the recent 2 years. There are <4 submissions per year prior to year
2019. Around 2019 to 2020, there are ~ 10 submissions per year.
In the years of 2021 and 2022, the numbers of submissions are
more than 130 and 170, respectively. Most submissions are at the
Investigational New Drug stage, where drug developers are explor-
ing the potential usage of various Al and ML tools in drug develop-
ment. Only a few submissions are under New Drug Applications or
Biological License Applications (Figure 4a).

676

From 2016 to the end of 2022, more than 300 meeting packages
containing Al and ML components were submitted to the FDA.
Among them, only a limited number of AT and ML submissions
are related to drug discovery. In contrast, using Al and ML tools
to guide drug design and discovery appears to be very active among
drugdevelopers. The discrepancy is anticipated because the FDA is
not actively involved in the drug discovery stage. At the preclinical
stage, Al and ML approaches have been applied to understand po-
tential toxicity of new compounds. As expected, most submissions
are at the clinical stage with a few submissions centered around un-
resolved issues after the compound is approved (Figure 4b). There
appears to be an imbalance on the usage of Al and ML tools to
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Figure 4 Overview of Al/ML Related Submissions for New Drug Development to the FDA. (a) The Number of Submissions by Year. (b) Al/

ML Submissions by Development Stage. (c) Al/ML Submissions by Therapeutic Areas. Al, artificial intelligence; ANDA, abbreviated new drug
application; BLA, biologics license application; CPIM, Certified in Production and Inventory Management; DDT, drug development tool; FDA, US
Food and Drug Administration; IND, investigational new drug; ML, machine learning; NDA, new drug application.

assist drug development across different therapeutic areas. About
a quarter of submissions is in oncology-related fields. Psychiatry,
neurology, gastroenterology, and hepatology, and medical imaging
are the other therapeutic areas where submissions are commonly
seen (Figure 4c).

There is a broad usage of Al and ML approaches in clinical drug
development, as reflected in the submissions. For example, some
drug developers propose Al and ML modeling to enrich patients,
to stratify patients with different safety risk factors, to select or op-
timize dosing, or to ensure adherence to the assigned dosing regi-
men. In recent years, some ML algorithms have been used to select
end points, identify biomarkers, or synthesize control groups. To
meet these objectives, various modeling approaches have been
utilized for covariate selection, anomaly detection, image/video/
audio assessment, and real-world data phenotyping. With new
tools and methodologies available, Al and ML are expected to im-
prove the efficiency of drug development and enhance patient care.
By peering into transformative and specific applications of AI/ML
in precision medicine using compelling case studies (Table 1), we
can gain insights into how precision medicine is adapting to ac-
commodate the surge of technological transformation.

Examples

Al-partnered dynamical model discovery for precision medicine.
Traditional approaches to modeling patients’ treatment data
rely upon the development of empirical or mechanistic models
that leverage existing data and/or capture known interactions
between disease pathophysiology and drug effects. However, the

CLINICAL PHARMACOLOGY & THERAPEUTICS | VOLUME 115 NUMBER 4 | April 2024

construction of accurate dynamic models to facilitate precision
medicine have proven to be a formidable challenge, primarily due
to the complexity of biological systems and the paucity of data. The
recent emergence of collections of large scale, high content data
have opened new possibilities. This growth of data has occurred
along the following three dimensions: (1) the number of patients
(c.g., from real-world data sources™; (2) the dimensionality of data
(e.g., from -omics®); and (3) as the number of measurements (e.g.,
from liquid biopsies’® and wearable devices'). The daunting task
of making sense of this deluge of data can easily overwhelm the
capabilities of human intellect alone.

One effective approach to overcome the analytical bottleneck is
to leverage the Al-partnered dynamical model discovery approach,
whereby the computational strength of AI/ML algorithms is com-
bined with the pharmacological domain knowledge of the human
modelers.”> As an example, a neural-pharmacokinetic/pharmaco-
dynamic (PK/PD) model that expresses the causality among dose,
PK, and PD has been developed.®® In the setting of individual-
ized predictions of patients’ platelet count from ecarly data, it has
been demonstrated that the proposed DL approach can outper-
form the existing population-PK/PD model on certain metrics
of predictive performance. Furthermore, the importance of using
a pharmacology-informed neural network architecture for PK
predictions to unseen dosing regimens has been demonstrated in
the setting of trastuzumab emtansine (T-DM1).2® The enhanced
accuracy provided by AI models can unlock new opportunities for
precision medicine.

Oncology is a particularly promising domain for partnering
with Al in data-driven dynamic model discovery. Due to the
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Table 1 Case studies of Al/ML application in precision medicine

Precision medicine application

Application description

Al/ML method(s) used

Longitudinal patient response predictions to
dose-optimize trastuzumab emtansine®®

Neural-PK and PD model which expresses
causality between dose, PK and PD was
implemented. In the setting of individualized
predictions of patients’ platelet count from
early data, it has been demonstrated that
the proposed approach can outperform the
existing population-PK/PD model on certain
metrics of predictive performance.

Pharmacology-informed recurrent neural
networks

Prediction of OS using longitudinal tumor
data®’

Explainable DL was developed for tumor
growth prediction, discover novel TGD
metrics, perform unbiased individual-level
predictions of OS using tumor data with
short follow-up. GitHub link — https://github.
com/jameslu01/TDNODE

Pharmacology-informed, encoder-decoder
neural network, XGBoost and SHapley
additive explanations

Identification of prognostic factors of long-
term OS in gastric cancer®

Prognostic factors of long-term OS and TGD
were identified using ML with potential to
inform future trial design in gastric cancer

Random survival forests, SIDEScreen
method

Early prediction of disease activity in multiple
sclerosis patients®3

An ML model was developed to predict
future disease activity in patients with
multiple sclerosis to facilitate early
detection of disease onset, improved
treatment planning, and augment
understanding of the illness

XGBoost with SHapley additive explanations

Prognostic and predictive factors identifica-

tion of TGD in advanced melanoma patients31

Potential prognostic and predictive
biomarkers of TGD in advanced melanoma
patients were identified using high-
dimensional Al/ML covariate screening
approaches applied on tabular and imaging
data (radiomics features obtained from
positron emission tomography/computed
tomography images)

Random regression forest with several
variable importance metrics for robust
feature selection

Patient population identification in clinical
practice of COVID-19 pneumonia®’

A scoring system was developed to identify
patients with plasma SuPAR level no less
than 6ng/mL (no commercially available
assays) for administration of Anakinra. The
developed scoring system is part of the
final fact sheet for Anakinra administration.

Elastic-net regression and neural networks

Abbreviations: Al, artificial intelligence; COVID-19, coronavirus disease 2019; DL, deep learning; ML, machine learning; OS, overall survival; PD,
pharmacodynamic; PK, pharmacokinetic; SUPAR, soluble urokinase plasminogen activator receptor; TDNODE, Tumor Dynamics Neural-ODE; TGD, tumor growth

dynamics.

complexity and heterogeneity of tumors, identifying the right
anticancer therapies and adjusting treatments based on a patient’s
response are highly challenging tasks. As highlighted by Acosta
et al.” there is a need for Al in integrating data to capture dy-
namic and real-time information to support precision medicine
approaches. To this end, a pharmacology-informed, encoder-
decoder neural network architecture of Tumor Dynamics
Neural-ODE (TDNODE) has been proposed.”” This formu-
lation generates patient embeddings from longitudinal tumor
data at the individual level, which can then be used to predict
the patients’ overall survival (OS). The model has demonstrated
the ability to overcome a significant limitation found in exist-
ing tumor dynamic models, specifically the issue of prediction
bias when utilizing tumor data with short follow-up periods.”®
Furthermore, the methodology has been shown to significantly
increase the accuracy of predicting OS at the individual patient
level, hence with the potential for enabling precision medicine
applications.”’

678

As technology further advances and more data become avail-
able, Al-partnered dynamic model discovery is likely to emerge as
a crucial way to surmount the challenge of data deluge and help us
continue to push the boundaries of precision medicine and lead to
improved outcomes.

Al/ML-enabled drug-disease modeling. A strikingdemonstration
of the value of AI/ML-enabled drug-disease modeling lies in
its applications to advance understanding of disease and drug
mechanism of action in a totality of evidence mindset. For
instance, ML methods were used to evaluate prognostic and
predictive factors governing long-term survival and tumor
growth dynamics in the Avelumab JAVELIN Gastric trial.”’
Through a systematic analysis of a vast array of covariates,
AI/ML techniques provided invaluable insights into response
outcomes and enabled an extensive investigation of patient
subpopulations that could potentially derive substantial
benefits from the treatment.
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Furthermore, the synergy between ML and the integration of
high-dimensional datasets presents an innovative avenue for le-
veraging novel biomarkers such as liquid biopsy circulating tumor
DNA and image-based radiomics. For the latter, it first actempts to
integrate radiomic features into models of tumor growth dynamics
report the use of ML-based radiomics feature selection in the real-
world sc:tting.31 Leveraging tumor phenotype features extracted
from images into longitudinal disease models has a great potential
to deepen the comprehension of tumor evolution and progression
dynamics, thereby contributing to informed clinical decision mak-
ing and to advance precision medicine. In fact, tumor heterogene-
ity is critical in cancer treatment due to drug resistance and failure
in advanced tumors. Intra-tumor variation and inter-tumoral ge-
netic differences shape disease progression. Standard assessment
criteria often miss nuances in patients with different lesion dynam-
ics. To address this, CICIL - short for ClassIfication Clustering of
Individual Lesions — a novel methodology integrating signal pro-
cessing and ML, was introduced to offer an ML-based metric of le-
sion dynamics similarit:y.32 Applying CICIL to over 1,700 patients
with metastatic colorectal cancer receiving cetuximab, yielded un-
covered insights. Lesion dynamics differ across tissues, especially in
KRAS-mutated patients. Notably, a multivariate Cox model high-
lighted the CICIL-based metric of tumor heterogeneity as a signif-
icant predictor of OS, revealing its potential. This is an example of
how ML-derived metrics may not only advance current approaches
but also incorporate a holistic view into predictive models.

AI/ML approaches have been further leveraged for precision
medicine to enhance existing models and provide predictions of
response dynamics and clinical outcomes in mechanism-agnostic
manners. This predictive prowess was demonstrated through
early disease activity prediction in patients with multiple sclerosis,
achieved by integrating and assessing diverse data dimensions, such
as demographics, response data, MRI scans, and neurological as-
sessments from pivotal clinical trials of cladribine. Integration of
explainable AI like SHAPley measures enabled a thorough under-
standing of the model results and impact of factors towards predic-
tions of disease activity.

The ability of AI and ML to navigate high-dimensional multi-
modal heterogenous datasets, recover nonlinear effects, and unveil
complex variable interactions holds profound potential in reshap-
ing drug discovery and therapeutic development. Moreover, the
integration of AI/ML tools into drug-disease modeling processes
opens new avenues for understanding novel biomarkers, digital
biomarkers, real-world data, and translational safety, augmenting
our understanding of the intricate interplay between drugs and
diseases.

Accelerated drug development and precision pharmacotherapy
using DeepNLME. DeepNLME is a secamless mix of dynamic,
statistical, and ML modeling, the primary benefit of which is
the ability to utilize disparate sources of information in the same
model simultaneously. Known interactions in disease biology and
medical interventions constitute a valuable source of information
that can be encoded in differential equation-based dynamic
models.>*® Mixed effects enable the specification of what
biological properties are expected to be shared across a population
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of patients and what properties have between-patient variability.
ML is a flexible way of identifying complex relationships from
data, be it how a medical image might inform patient-specific
model parameters or how one dynamic model variable affects the
rate of change of another. DeepNLME enables explicit encoding
of incomplete scientific knowledge, letting ML identify the
missing pieces in a data-driven and individualizable way.

A recent study tested the effectiveness of DeepNLME for en-
abling individualized predictions of survival probabilities based
on covariates and early tumor size biomarker data. In the model,
the general structure of the problem was defined such that tumor
size dynamics were split into one drug responsive and one drug-
unresponsive compartment. The total tumor size then affected the
hazard of death, enabling the modeling of tumor-size-dependent
survival probability. Although the structure of the model was ex-
plicitly defined based on biological principles, the exact functional
forms of how drug concentration and current tumor size affected
tumor growth/shrinkage, how tumor size affected hazard, and how
patient covariates could inform patient outcomes were left for neu-
ral networks to automatically discover based on a synthetic data-
set that was used to train the model (200 patients). The trained
DeepNLME model could accurately reproduce the longitudinal
tumor sizes predicted by the data-generating model (best possible
prediction) on unseen data under different scenarios of data avail-
ability (with or without covariates, with or without access to early
tumor size measurements). Furthermore, the DeepNLME model
could reproduce the probability of survival for individual patients
that the data-generating model would predict under the same con-
ditions of data availability. The resulting DeepNLME model could
thus utilize not only baseline covariates but also all tumor size mea-
surements until a given time to predict the survival probability over
time and how that probability is affected by different chemothera-
peutic dosing schemes.

The ability of a model to train its behavior based on data from
previous patients yet individualize predictions of how a patient
outcome would be affected by different treatment options based
on all the covariate and longitudinal biomarker information that
is available for the specific patient at the very day that a treatment
decision must be made enables tailored treatment optimization.
The ability to automatically identify complex relationships within
the model and complex predictive factors not only facilitates more
rapid modeling but also the discovery of more complex and pre-
dictive relationships than a manual trial-and-error approach to
modeling might have identified. Although this study has yet to be
published in full detail, ongoing work is already utilizing the same
approach with real oncology data, as well as in different domains

such as ophthalmology and epidemiology.

Application of artificial intelligence and machine learning in drug
development and precision medicine. Anakinra is an interleukin-1
antagonist indicated for the treatment of rheumatoid arthritis,
cryopyrin-associated periodic syndromes, and deficiency of
interleukin-1 receptor antagonist in the United States.>® A clinical
trial was conducted to evaluate the efficacy and safety in patients
with coronavirus disease 2019 (COVID-19) pneumonia who were
at risk of developing severe respiratory failure. The COVID-19
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pneumonia was radiologically confirmed by chest X-ray or CT
scan. As part of the enrollment criteria, all enrolled patients
were required to have a plasma soluble urokinase plasminogen
activator receptor (SuPAR) level no less than6ng/mL. Based
on the clinical trial results, the sponsor sought emergency use
authorization.”” It has been noted that the SuPAR assay is not
commercially available for use in the United States. To align
with the clinically tested patient population, an ML analysis was
conducted with the objective to search for alternative method
based on commonly measured patient characteristics to identify
patients with SuPAR no less than 6 ng/mL.38 The final identified
patient identification method is a scoring system which comprises
eight items, including age, severe pneumonia defined by World
Health Organization (WHO) criteria, smoking status, sequential
organ failure score, neutrophil-to-lymphocyte ratio, hemoglobin,
medical history of ischemic stroke, blood urea, or medical history
of renal disease. Patients with at least 3 out of the 8 items meeting
established threshold are likely to be the patients with SuPAR no
less than 6 ng/mL. The established scoring system demonstrated
high positive predictive value, high specificity, and reasonable
sensitivity in both the training and external validation dataset.
The selected items are also biologically plausible. This score
is recommended in the fact sheet of anakinra to guide patient
population identification in clinical practice.37

From literature summary to regulatory landscape to concrete case
studies, we have encapsulated the potential that AI/ML currently
holds in transforming the field of precision medicine. The transfor-
mative promise, however, presents a gamut of challenges that merit
careful consideration and require addressing of nuanced issues re-
lated to bias, generalizability, reliability, interpretability, and privacy.
With the foundation firmly established, in the next section, we will
navigate current challenges, and suggestions to address these chal-
lenges, and elucidate how AT’s integration in precision medicine can
be harnessed responsibly and ethically to revolutionize patient care.

CHALLENGES AND FUTURE DIRECTION

Challenges in Al/ML for health

The capabilities of Al systems are increasing by the day. Large lan-
guage models (LLMs) are now able to confidently engage in any
topic, create rhymes, debug code, and even pass the US medical
licensing examination.” These tools are being rapidly adopted by
the community. Take the example of ChatGPT, an AI Chatbot
developed by OpenAT (https://chat.openai.com/). It reached one
million users in just 5days,*® highlighting the transformative
potential — and perils — of AI technologies. Nevertheless, these
achievements of Al have also sparked critical debates around its
accuracy, safety, privacy, reliability, and, most importantly, its
trustworthiness. The various challenges brought about by Al in
precision medicine and potential solutions are outlined in Table 2.

Trust is a critical yet elusive concept, particularly in the AI do-
main. As it happens among humans, trust requires time to build
but can be lost instantly. For instance, ChatGPT is known for
confidently providing inaccurate answers.”! These occurrences,
referred to as “hallucinations,” are instances where the system con-
fidently and erroncously produces outputs. These scemingly trivial
yet crucial mistakes are an example of how the trustworthiness of
Al systems can be casily undermined, casting a shadow over their
potential benefits. Therefore, it is clear that establishing trust in Al
necessitates the absence of such untrustworthy behaviors.

To address these challenges, it is essential to identify a compre-
hensive set of conditions deemed necessary for trustworthiness in
Al systems. The National Institute of Standards and Technology
(NIST) has made strides in this direction, outlining key dimen-
sions of trustworthiness in their recently-released guidelinf:.42
These include validity, reliability, safety, security, explainability,
interpretability, privacy, and fairness (Figure S). These dimensions
bridge the gap between scientific and engineering perspectives,
highlighting the multidisciplinary nature of AI and the unique
considerations each discipline brings to the table.

Table 2 Challenges and solutions for Al/ML systems in precision medicine

Challenges recognized

Proposed solutions

Al systems may exhibit untrustworthy behavior. Trustworthiness
requires validity and reliability — reproducibility, generalizability, and
adversarial resilience — accountability and transparency.

« Promote the use of Al Risk Management Framework®*?

* Creation of societal level agreed upon criteria for trustworthiness

¢ Implement model public auditability

* Development of proofs and certificates for Al systems’ design

¢ Qutline context of use of Al systems in depth

¢ Standardization of protocols for scoring datasets

¢ Incentivize model builders to demonstrate trustworthiness in Al
systems

ML algorithms may manifest racial bias, economic bias, and biases
related to cultures, identities, and values of humans labeling the
datasets. This can result in biased and unfair behavior of Al systems
towards certain patient populations.

¢ Encourage usage of the “ethical algorithm” to reduce bias in
model predictions®*
* Use federated learning to ensure fairness

Al systems are susceptible to data extraction attacks or might inad-
vertently divulge confidential information. Ensuring privacy and safety
of personal information and intellectual property is crucial.

¢ Use homomorphic encryption and multi-party computation to
ensure algorithm privacy

* Use federated learning and differential privacy to safeguard
personal information®’

* Use synthetic data generation as a solution to protect patient
privacy

Abbreviations: Al, artificial intelligence; ML, machine learning.
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Figure 5 Characteristics of trustworthy Al systems. Valid & Reliable is a necessary condition of trustworthiness and is shown as the base for
other trustworthiness characteristics. Accountable & Transparent is shown as a vertical box because it relates to all other characteristics.*?

Al, artificial intelligence.

Validity and reliability form the cornerstone of any empirical re-
search. The findings should not only be reproducible but also capa-
ble of generalizing across similar application domains and remaining
stable over time. However, an examination of over 300 papers in ML
for health (ML4H) health applications revealed significant repro-
ducibility issues.*® These range from issues related to code and data
availability, variances in model performance, and the utilization of
multiple datasets for testing. These factors contribute significantly to
the challenges of achieving reproducibility in Al research.

Reliability can be many things, one example for Al systems
extends to its resilience to adversarial examples. There have been
instances where ML systems could be fooled by strategically con-
structed inputs. For instance, stickers on stop signs can render
them invisible to self-driving cars,* or for the medical domain spe-
cifically, the fact that addition of noise to ECG readings can alter
the prediction of an Al classifier.”®

Bias is another critical issue that can lead to irreproducibility and
unfair outcomes across different subgroups of people. For example,
a recent review of many ML models trained on Fitbit data to detect
COVID showed widely different performances when tested on dif-
ferent darasets.*® This discrepancy goes above and beyond model
drifts phenomena that are already well studied in other fields of med-
ical machine learning, such as EHR,” and suggest that different ML
models have been trained with significantly differing definitions of
“COVID cases,” some more and some less severe stemming from the
fact that each real-world dataset has its unique characteristics, intro-
ducing potential for bias, and consequently, irreproducibility.

Bias in Al for health applications is not a new phenomenon. There
have been documented cases of algorithmic bias in health care, such
as classifiers exhibiting unequal error rates across races in mortality
prediction tasks,”® and algorithms misidentifying historical health
costs as a proxy for health needs, leading to unfair triaging of differ-
ent populations.” Even algorithms measuring oxygen saturation have
exhibited racial bias, leading to unfair treatment, demonstrating that
bias can affect any algorithm, ML-based or not.”’ Therefore, ensuring
trust in Al systems necessitates careful navigation and balance of these
complex factors to guarantee reliability, fairness, and validity.

The last Syears of research have indicated that it is possible to
develop fair algorithms despite biased data®'; however, it becomes
increasingly difficult when the discriminated-against group is
heavily under-represented or completely absent from the training
set. This absence of diversity not only affects the generalizability of
the research findings but also hampers efforts toward the creation
of fair Al algorithms.
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Bias can subtly infiltrate AI models and persistently affect their
outputs. For instance, ChatGPT, based on GPT-3.5, incorporates
a supervised and reinforcement learning fine-tuning step, which
has improved the accuracy of the model.”* However, this step
introduces a layer of bias through the human labelers, or annota-
tors, whose identities, cultures, beliefs, and values influence the
responses provided by ChatGPT. This additional source of bias
complicates efforts to mitigate the overall bias of the model, em-
phasizing the need for diversity among annotators, not only for
text, but for medical applications alike.

Privacy is another major concern, particularly in the context
of large language models that have been proven susceptible to ex-
traction attacks. GPT-2, the predecessor of ChatGPT, has been
shown to be amenable to being tricked into divulging confiden-
tial information from its training data.”> The same risk applies
to health settings, especially with the increasing use of wearable
devices that collect sensitive health data. Such data are high-
dimensional and even seemingly innocuous data, such as a series of
step counts from a Fitbit device, could potentially be used as a key
for extraction attacks if the Al systems are not trained in a privacy-
protected manner.

Fortunately, there are ways to mitigate these issues. Models
can be trained to generalize across datasets and time, maintain
a certain level of privacy, and ensure fairness.”’ However, these
mitigations often involve trade-offs among different factors,
such as validity, fairness, and privacy. The NIST in their re-
cently released framework*? recommends a risk-based approach,
which involves identifying the context of use of the Al system
and striking an appropriate balance among the different factors

(Figure 6).

Ultimately, establishing trust in AI cannot be proven exhaus-
tively but can be described using a set of criteria agreed upon at
the societal level. Full openness of the models may not be possi-
ble due to privacy, cost, or Intellectual Property (IP) reasons, but
that does not rule out trade-offs such as model public auditabil-
ity that it is crucial to ensure the trustworthiness of Al systems
(https://www.medperf.org/). This process may involve creating
proofs and certificates that attest to the involvement of end-users
during the AI system’s design. It also includes the development
of standardized protocols for scoring datasets®**> for represen-
tativeness and describing the context of use and the suggested
trade-offs around different trustworthiness criteria. These ef-
forts require creating a system of incentives at the societal level
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Figure 6 Depending on the chosen Context of Use (CoU), as represented as a point on the dimension from blue to red (science to health care
applications) different tradeoffs between different dimensions of trustworthiness are necessary.

to encourage model builders to demonstrate the trustworthiness
of their Al systems, even when the underlying data or algorithms
cannot be openly shared.

Data sharing, distributed learning, and synthetic data
generation

Despite a global surge in health data, access to health data remains
a major challenge in AI/ML development for health. There are
three reasons. First, health data are often decentralized and gen-
erated by many different actors, such as hospitals, companies,
and devices.*® Second, health data contain personal and sensitive
information and are therefore highly regulated.”” Consequently,
managing and using medical data requires strict adherence to
data protection guidelines and regulations, namely the General
Data Protection Regulation (GDPR) in Europe and the Health
Insurance Portability and Accountability Act (HIPAA) in the
United States. Third, because it is costly to generate health data,
they are valuable and require high market prices to acquire. In ad-
dition, data providers (e.g., academics, startups, and pharmaceu-
tical companies) must generate and share data in an ecosystem of
competing interests.

To address these challenges, institutions secking collaboration
in the health sector need to identify an efficient, scalable, and
secure approach to share their data. Conventionally, health data
are shared through a data pooling approach. The data generated
by multiple sources are aggregated and stored in a central loca-
tion before analyses and modeling. However, this method re-
quires high levels of computation power and storage space from
a centralized provider to handle large data and is prone to data
security risks.

682

Federated data access offers a novel way to break these data
silos and enable collaborative ML efforts among different data
sources (i.c., pharmaceutical companies, clinical researchers,
manufacturers, and hospitals).”” In contrast to the conventional
data pooling approach, the federated approach trains models lo-
cally within each institution.>® For instance, in forming a feder-
ated model, only the models trained in the institutions are shared
and aggregated by a central organizing company. Over time, the
federated model is then optimized by integrating the insights
from all different sources without directly accessing individual
patient data from the institutions. There are three advantages:
first, it provides a secure, private path for diverse institutions to
share data. Because the aggregating provider does not have direct
access to individual patient data, it protects the patients’ privacy
and maintains the security of proprietary source information.
Second, the data providers retain full ownership and control
of their data. Finally, it enhances the efficiency and scalability
in accessing large-volume data as no copies of private data are
downloaded and centrally stored.

Three aspects must be considered to realize a secured and
efficient collaborative ML: data privacy, algorithm privacy,
and performance (or compute power). Several approaches can
be taken to safeguard these three aspects. For example, “differ-
ential privacy” can be deployed to protect data privacy. This
method allows masking and de-identification of the original
data sources by imposing additional, structured noises to the
data. “Homomorphic encryption and multi-party computation”
can be applied to further secure algorithm privacy. Data are en-
crypted and can only be decoded with an access key possessed
by a validated owner. Although this method enables proven
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data and algorithm privacy, it requires massive computational
resources in real-life scenarios. The third method to secure a
high performance while protecting the data privacy is to apply
“federated learning.” Federated learning can also be reinforced
with methods like “algorithm or model compilation, secure ag-
gregation (MPC - HE), and trustless traceability.”w’59 These
reinforcement methods ensure a comparable level of algorithm
privacy to that of homomorphic and multi-party computation
approaches, whereas achieving the high-performance levels of a
standard federated learning approach.

In addition, federated learning possesses unique qualities that
facilitates healthcare data sharing. First, it is fundamentally data
agnostic, meaning that it can be applied to analyze a variety of data
modalities. Second, it is framework and infrastructure agnostic,
indicating that it can be applied to any kind of machine or technol-
ogy analytics technology and can be adapted to different informa-
tion technology infrastructures.

Consequently, federated learning has been increasingly applied
to advance Al in medical research. By enabling pharmaceutical
companies, hospitals, and academics to bring their data together
securely, it accelerates the formation of new international collab-
oration and cooperative consortia on discovering complex disease
mechanisms and biologies. It also opens up new opportunities for
data exchange and aggregation, such as combining heterogeneous,
multimodal data and ensuringa critical mass of patient data for rare
disease R&D. Increasing evidence has also shown that it is a prom-
ising approach in advancing precision medicine by accelerating the
identification of biomarkers, patient subtypes, and drug targets for
complex diseases such as cancers.

Use of synthetic data is a lucrative strategy to preserve data pri-
vacy while improving the efficiency and innovation of using Al/
ML to advance precision medicine and medical research.®®! To
protect patient privacy, Giuffre and Shung have discussed the uti-
lization of practical differential privacy methods to help trade-off
privacy and utility, thereby increasing practical applications of AI/
ML-based synthetic data generation (SDG) tools.”’ Although data
synthesis is not new, there has been significant advancements in
SDG methods. Traditionally, stochastic Monte-Carlo simulations
on differential equations of dynamic systems or statistical models
have been used for SDG. In the past decade, scalable and general-
izable AI/ML-based SDG methods, such as generative adversarial
neural networks, variational auto-encoders, and auto-regressive
models were developed and have been successfully exploited for
the recent Al revolution of large-language models.®*~¢*

Use of synthetic data can not only help preserve patient privacy
but also help generate hypotheses in the process of obtaining real
datasets, augment real datasets (partial synthetic data), ease sharing
data to verify analyses and improve reproducibility, and pre-train
models to be used for application in specific populations.65 AI/ML
models for SDG have shown to emulate real data characteristics
in various therapeutic areas, including but not limited to hematol-
ogy, oncology, infectious diseases, medical imaging, and endocri-
nology for lucrative applications, such as estimation of treatment
effect and survival, use as a proxy for clinical trial datasets to per-
form secondary analyses, generate large datasets for development
of image segmentation models, predict future patient outcomes
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(e.g., glycemic chansge), and data augmentation to develop disease
diagnosis models.®7° Additionally, open source tools, such as
Synthea, have been developed for generating EHRs data of patient
disease progression and clinical workflow.”! These examples and
open-source software highlight the utility of synthetic data while
maintaining privacy of patient data.

Artificial data, however, are not immune to pitfalls. These data
can perpetuate and/or accentuate biases underlying the original
data used to create the data generation model, might lack inter-
pretability due to the black-box nature of underlying algorithms
leading to lack of trust in using for real applications, might reveal
confidential information in an adversarial attack, and lack consen-
sus on evaluation of data quality.éo’éw2 These challenges are being
carefully addressed by development of regulatory policies around
using these data for improving patient outcomes.

Regulatory considerations (with a focus on fit-for-purpose
risk-based framework) for the use of Al/ML for precision
medicine

The diverse uses of Al in drug development highlight the need
for a careful regulatory assessment of both benefits and risks and
underscores the importance of adopting a risk-based management
approach that is proportional with measures commensurate with
the level of risk posed by the specific context of use. For any spe-
cific Al application in drug development, model risk calculations
will be determined by model influence and the decision conse-
quence based on the context of use. For example, high-risk models
may require more evidence of credibility than low-risk models,
and the regulatory approach may differ accordingly.

As with any innovation, Al and ML creates opportunities, and
new and unique challenges. To meet these challenges, the FDA has
accelerated its efforts to create an agile regulatory ecosystem that
can facilitate innovation and adoption while safeguarding public
health. As the FDA continues to refine the regulatory approaches
around the use of Al to facilitate the generation of reliable evidence
and to support decision making, the evidentiary standards needed
to support drug approvals remain the same regardless of the tech-
nological advances involved. Al and ML will undoubtedly play a
critical role in drug development, and the FDA remains commit-
ted to robust policy development that both protects and promotes

public health.

CALL FOR ACTIONS

Sharing of data, algorithms, and experiences among the
community

The call to action to make data collected with National Institutes
of Health (NTH) grants available to the community has finally
become a funded mandate, with the NIH Data management
policy coming into effect January 25, 2023, and allowing re-
searchers to write in their grants the cost for long-term data
sharing (https://grants.nih.gov/grants/guide/notice-files/ NOT-
OD-21-013.html). But sharing does not necessarily mean re-use
and therefore reproducibility; many datasets, especially in the
medical world, have been recently deemed “Open In Appearance
Only.”73 Furthermore, even when data are successfully re-used,
reproducibility of analysis and findings are still not guaranteed if
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Figure 7 Al companies come in many forms (image from LEK - https://www.lek.com/insights/ei/artificial-intelligence-life-sciences-formula-

pharma-success-across-drug-lifecycle). Al, artificial intelligence.

code is not released alongside data.®® For this reason, health anal-
ysis and algorithms could be made available to all potential fu-
ture subjects of those algorithms’ decisions (in the health world,
that means all of us). Due to privacy, cost and IP implication this
may not be always possible (especially when it comes to regula-
tory bodies) but it is worth pushing for at least some form of pub-
licly auditability, when data/models may not be made publicly
available directly, but performances and scores across domains
of interest (c.g., representatives for datascts) are. This has been
described as “federated benchmarking,” and the recent release
of MedPerf (medperf.org) by MLCommons provides a privacy-
preserving open-source platform for benchmarking AT models to
deliver clinical efficacy.74

Development of best practices and regulatory guidances
The FDA continues to engage sponsors, Al tool developers, data
service providers, ethicists, academia, patients and patient groups,
and other international regulatory authorities interested in Al
and ML in drug and biologic development through discussion
papers, white papers, workshops, and meetings, etc. These engage-
ments serve to better understand any gaps in regulatory scientific
methods that may need to be developed and aims to pave the way
for meaningful regulatory clarity as these technologies continue
to evolve.

Work with broad stakeholders

Precision medicine, is an important field with profound implica-
tions for drug development and health care, stands on the brink of
a significant evolution with the advent of AI/ML. A considerable
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amount of activity has built up over the past decade applying
AT toward all aspects of health care. A concise visualization
this activity was presented by the consulting firm LEK in 2018
(Figure 7). Companies are shown organized by their activity in
terms of primary data types used and the drug development stage
their technologies are principally applied toward. The key point of
this illustration is that there is a vast variety of Al-driven research
in toward health care, and many companies are using diverse and
complementary approaches. Clearly in this ecosystem, it is essen-
tial to find effective partnerships between academia, biotechnol-
ogy companies, and big pharma. Thus, successful integration of
AI/ML in precision medicine requires collaborations across a
wide range of stakeholders, including but not limited to patient
groups, academic institutions, non-profit organizations, industry,
and regulatory bodies. Each stakeholder group possesses unique
expertise and perspectives that are critical to the successful appli-
cation of AI/ML in precision medicine. We envision this collabo-
ration will involve knowledge sharing, joint problem-solving, and
creation of standards and solutions. In this concerted effort, we
need to ensure the applications of AI/ML in precision medicine
is technologically sound, clinically relevant, ethically appropriate,
and patient-centered. By fostering an ecosystem of collaboration,
we can collectively address the challenges and unlock the potential
these technologies hold for facilitating drug development and im-
proving patient outcomes.
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